MATH3280A Introductory Probability, 2014-2015 Solutions to HW6

P. 365 Ex. 2

Solution

(a) The values of the joint probability mass function $p(x, y)$ of X and Y is given by the following table.

$p(x, y)$	y						
	1	2	3	4	5	6	
x	2	$1 / 36$	0	0	0	0	0
	0	$2 / 36$	0	0	0	0	
	0	$1 / 36$	$2 / 36$	0	0	0	
	5	0	0	$2 / 36$	$2 / 36$	0	0
	0	0	$1 / 36$	$2 / 36$	$2 / 36$	0	
	7	0	0	0	$2 / 36$	$2 / 36$	$2 / 36$
	8	0	0	0	$1 / 36$	$2 / 36$	$2 / 36$
9	0	0	0	0	$2 / 36$	$2 / 36$	
10	0	0	0	0	$1 / 36$	$2 / 36$	
11	0	0	0	0	0	$2 / 36$	
	12	0	0	0	0	0	$1 / 36$

and $p(x, y)=0$ elsewhere.
(b) The marginal probability mass function of X is given by

x	2	3	4	5	6	7	8	9	10	11	12
$p_{X}(x)$	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

and $p_{X}(x)=0$ elsewhere.
The marginal probability mass function of Y is given by

y	1	2	3	4	5	6
$p_{Y}(y)$	$1 / 36$	$3 / 36$	$5 / 36$	$7 / 36$	$9 / 36$	$11 / 36$

and $p_{Y}(y)=0$ elsewhere.
(c) The expectations of X and Y are

$$
\begin{aligned}
& E(X)=\sum_{x=2}^{12} x \cdot p_{X}(x)=7 \\
& E(Y)=\sum_{y=1}^{6} y \cdot p_{Y}(y)=\frac{161}{36}
\end{aligned}
$$

P. 366 Ex. 12

Solution

The probability density function of X is

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& = \begin{cases}\int_{0}^{1-x} 3(x+y) d y & , \text { if } 0<x<1 \\
0 & , \text { if } x \leq 0 \text { or } x \geq 1\end{cases} \\
& = \begin{cases}-\frac{3}{2} x^{2}+\frac{2}{3} & , \text { if } 0<x<1 \\
0 & , \text { if } x \leq 0 \text { or } x \geq 1\end{cases}
\end{aligned}
$$

The probability density function of Y is

$$
\begin{aligned}
& f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x \\
&= \begin{cases}\int_{0}^{1-y} 3(x+y) d x & , \text { if } 0<y<1 \\
0 & , \text { if } y \leq 0 \text { or } y \geq 1\end{cases} \\
&= \begin{cases}-\frac{3}{2} y^{2}+\frac{2}{3} & , \text { if } 0<y<1 \\
0 & , \text { if } y \leq 0 \text { or } y \geq 1\end{cases} \\
& P\left(X+Y<\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}-x} 3(x+y) d y d x=\frac{1}{8} \\
& P\left(X+Y>\frac{1}{2}\right)=\frac{7}{8}
\end{aligned}
$$

P. 367 Ex. 15

Solution

(a) We have

$$
\begin{aligned}
& 1=\int_{0}^{1} \int_{x}^{1} c x(1-x) d y d x=\frac{1}{12} c \\
& \text { i.e. } c=12
\end{aligned}
$$

(b) The joint probability density function of X and Y is

$$
f(x, y)= \begin{cases}12 x(1-x) & , \text { if } 0 \leq x \leq y \leq 1 \\ 0 & , \text { otherwise }\end{cases}
$$

The marginal probability density function of X is

$$
f_{X}(x)= \begin{cases}\int_{x}^{1} 12 x(1-x) d y=12 x(1-x)^{2} & , \text { if } 0 \leq x \leq 1 \\ 0 & , \text { otherwise }\end{cases}
$$

The marginal probability density function of Y is

$$
f_{Y}(y)= \begin{cases}\int_{0}^{y} 12 x(1-x) d x=6 y^{2}-4 y^{3} & , \text { if } 0 \leq y \leq 1 \\ 0 & , \text { otherwise }\end{cases}
$$

Since $f(x, y) \neq f_{X}(x) f_{Y}(y)$, by Theorem $8.7 X$ and Y are not independent.

P. 444 Ex. 1

Solution

Let Y be the random variable of the number of tosses until two tails occur successively.
Let

$$
\begin{aligned}
& X_{n}= \begin{cases}1 & , \text { if the n-th toss is tail } \\
0 & , \text { if the } \mathrm{n} \text {-th toss is head }\end{cases} \\
E(Y) & =E\left(E\left(Y \mid X_{1}\right)\right) \\
& =E\left(Y \mid X_{1}=0\right) P\left(X_{1}=0\right)+E\left(Y \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
E\left(Y \mid X_{1}=0\right) & =\sum_{k=2}^{\infty} k \cdot P\left(Y=k \mid X_{1}=0\right) \\
& =\sum_{k=2}^{\infty} k \cdot P(Y=k-1) \\
& =\sum_{k=1}^{\infty}(k+1) \cdot P(Y=k) \\
& =\sum_{k=2}^{\infty}(k+1) \cdot P(Y=k) \\
& =\sum_{k=2}^{\infty} k \cdot P(Y=k)+\sum_{k=2}^{\infty} \cdot P(Y=k) \\
& =E(Y)+1 \\
E\left(Y \mid X_{1}=1\right) & =\sum_{k=2}^{\infty} k \cdot P\left(Y=k \mid X_{1}=1\right)
\end{aligned}
$$

For $k \geq 3$,

$$
\begin{aligned}
& P\left(Y=k \mid X_{1}=1\right) \\
& =P\left(Y=k \mid X_{1}=1, X_{2}=1\right) P\left(X_{2}=1\right)+P\left(Y=k \mid X_{1}=1, X_{2}=0\right) P\left(X_{2}=0\right) \\
& =0+P(Y=k-2) \cdot \frac{1}{2}
\end{aligned}
$$

Then

$$
\begin{gathered}
\begin{aligned}
E\left(Y \mid X_{1}=1\right)= & 2 P\left(Y=2 \mid X_{1}=1\right)+\sum_{k=3}^{\infty} k \cdot P\left(Y=k \mid X_{1}=1\right) \\
= & 2 \cdot \frac{1}{2}+\sum_{k=3}^{\infty} k \cdot \frac{1}{2} P(Y=k-2) \\
= & 1+\frac{1}{2} \sum_{k=1}^{\infty}(k+2) \cdot P(Y=k) \\
= & 1+\frac{1}{2} \sum_{k=2}^{\infty}(k+2) \cdot P(Y=k) \\
& =1+\frac{1}{2}\left(\sum_{k=2}^{\infty} k \cdot P(Y=k)+2 \sum_{k=2}^{\infty} P(Y=k)\right) \\
& =1+\frac{1}{2}(E(Y)+2) \\
& =\frac{1}{2} E(Y)+2 \\
E(Y)= & E\left(E\left(Y \mid X_{1}\right)\right) \\
= & E\left(Y \mid X_{1}=0\right) P\left(X_{1}=0\right)+E\left(Y \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
= & (E(Y)+1) \frac{1}{2}+\left(\frac{1}{2} E(Y)+2\right) \frac{1}{2} \\
= & \frac{3}{4} E(Y)+\frac{3}{2}
\end{aligned}
\end{gathered}
$$

Hence $E(Y)=6$.

